On Some Special Classes of Continuous Maps

نویسندگان

  • MARIA MANUEL CLEMENTINO
  • DIRK HOFMANN
  • D. HOFMANN
چکیده

We present a survey on recent study of special continuous maps, like biquotient, triquotient, proper, perfect, open and étale maps and a selection of open problems in this area. 1. Special morphisms of Top Triquotient maps were introduced by E. Michael in [24] as those continuous maps f : X → Y for which there exists a map ( ) : OX → OY such that, for every U, V in the lattice OX of open subsets of X: (T1) U ♯ ⊆ f(U), (T2) X = Y , (T3) U ⊆ V ⇒ U ♯ ⊆ V , (T4) (∀y ∈ U ) (∀Σ ⊆ OX directed) f(y) ∩ U ⊆ ⋃ Σ ⇒ ∃S ∈ Σ : y ∈ S. It is easy to check that, if f : X → Y is an open surjection, then the direct image f( ) : OX → OY satisfies (T1)-(T4). If f : X → Y is a retraction, so that there exists a continuous map s : Y → X with f ◦ s = 1Y , then ( ) ♯ := s( ) satisfies (T1)-(T4). Moreover, if f : X → Y is a proper surjection (by proper map we mean a closed map with compact fibres: see [2]), then U ♯ := Y \ f(X \U) fulfills (T1)-(T4). That is, open surjections, retractions and proper surjections are triquotient maps. But there are triquotient maps which are neither of these maps (cf. [3, 15] for examples). However, we do not know whether these three classes of maps describe completely triquotient maps, in the sense we state now: Received August 24, 2005. The authors acknowledge partial financial assistance by Centro de Matemática da Universidade de Coimbra/FCT and by Unidade de Investigação e Desenvolvimento Matemática e Aplicações da Universidade de Aveiro/FCT. This text will be part of the book “Open Problems in Topology 2”, to be published by Elsevier BV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the pointfree counterpart of the local definition of classical continuous maps

The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...

متن کامل

The homotopy classes of continuous maps between some non - metrizable manifolds

We prove that the homotopy classes of continuous maps R → R, where R is Alexandroff’s long ray, are in bijection with the antichains of P({1, . . . , n}). The proof uses partition properties of continuous maps R → R. We also provide a description of [X,R] for some other non-metrizable manifolds.

متن کامل

Composition operators and natural metrics in meromorphic function classes $Q_p$

‎In this paper‎, ‎we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...

متن کامل

On Some Special Classes of Sonnenschein Matrices

‎In this paper we consider the special classes of Sonnenschein matrices‎, ‎namely the Karamata matrices $K[alpha,beta]=left(a_{n,k}right)$ with the entries‎ ‎[{a_{n,k}} = sumlimits_{v = 0}^k {left( begin{array}{l}‎ ‎n\‎ ‎v‎ ‎end{array} right){{left( {1‎ - ‎alpha‎ - ‎beta } right)}^v}{alpha ^{n‎ - ‎v}}left( begin{array}{l}‎ ‎n‎ + ‎k‎ - ‎v‎ - ‎1\‎ ‎,,,,,,,,,,k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005